Analysis of Factors Hindering Artificial Intelligence Adoption in Office Management among Generation Z Interns

  • Happy Paramita Politeknik Negeri Bandung
  • Muhammad Rizky Effendi Politeknik Negeri Bandung
Keywords: Artificial Intelligence, Generation Z, Office Management, Legacy Systems, Task-Technology Fit, Adoption Barriers

Abstract

Generation Z enters the workforce as digital natives with high technological proficiency, yet a significant gap exists between their digital potential and actual Artificial Intelligence (AI) utilization in traditional office settings. The purpose of this research is to analyze this paradox of AI adoption among Generation Z interns in office management contexts. Although this generation is considered highly tech-savvy, preliminary observations indicate a lack of AI utilization in their internship roles. This study aims to investigate the structural, cultural, and task-related barriers that prevent them from effectively leveraging AI. This study employs a qualitative method involving in-depth interviews with eight subjects from various companies in Bandung, supported by relevant literature. The findings reveal that the low adoption of AI is primarily driven by three critical factors: (1) structural barriers, specifically the mandatory use of legacy systems and strict data security policies; (2) cultural barriers, such as hierarchical environments that suppress autonomy; and (3) task-related barriers, where repetitive clerical tasks are deemed incompatible with generative AI capabilities. Through the lens of Task-Technology Fit (TTF) and Technology Acceptance Model (TAM), the analysis demonstrates that high digital literacy does not guarantee adoption when organizational infrastructure barriers exist. The results underscore the urgent need for organizations to modernize their infrastructure and redefine internship roles to fully harness the potential of the Gen Z workforce.

References

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Chaniago, H. (2025). Manajemen kantor kontemporer (Edisi ke-2). PT Edukasi Riset Digital.

Chaniago, H., Harmonis, H., & Paramita, H. (2024). Organizational culture and digital innovation: Barriers to AI adoption in Indonesian workplaces. Journal of Business Innovation, 15(2), 45–62.

Chaniago, H., & Efawati, Y. (2024). Individual Innovative Behavior Model: The Role of Entrepreneurial Leadership in Uncertain Times. Quality-Access to Success, 25(202).

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). SAGE Publications.

Department for Science, I. and T. (2024). A pro-innovation approach to AI regulation: Government response to consultation. https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach

Efawati, Y. (2023). Trust as Antecedent of Innovative Behavior in the Workplace. International Journal Administration, Business & Organization, 4(3), 35-47. https://doi.org/10.61242/ijabo.23.381

Efawati, Y. (2024). Peran Budaya Digital dan Kreativitas terhadap Kinerja Karyawan: Apakah Krusial Bagi Perusahaan?. Jurnal Akuntansi Keuangan dan Bisnis, 17(2), 139-150.

Efawati, Y. (2020). The influence of working conditions, workability and leadership on employee performance. International Journal Administration, Business & Organization, 1(3), 8-15. https://doi.org/10.61242/ijabo.20.40

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11

Goldstein, J. E., Neimark, B., Garvey, B., & Phelps, J. (2023). Unlocking “lock-in” and path dependency: A review across disciplines and socio-environmental contexts. World Development, 161, 106116. https://doi.org/10.1016/j.worlddev.2022.106116

Haag, S., & Eckhardt, A. (2024). Dealing effectively with shadow IT by managing both cybersecurity and user needs. MIS Quarterly Executive, 23(4). https://aisel.aisnet.org/misqe/vol23/iss4/5

Hani, N., Lestari, P. V, Zamora, H. P., Ismayanti, R., & Setiawan, I. (2024). Analisis faktor penerimaan pengguna ChatGPT dengan menggunakan metode TAM pada mahasiswa Universitas Amikom Purwokerto. Jupiter, 2(6), 51–61. https://doi.org/10.61132/jupiter.v2i6.612

Lestary, L., & Chaniago, H. (2023). Pengaruh lingkungan kerja terhadap kinerja karyawan. Jurnal Riset Bisnis Dan Investasi, 3(2), 94–103.

Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation, 122, 102623. https://doi.org/10.1016/j.technovation.2022.102623

Mulyadi, R. D. R., & Efawati, Y. (2024). Understanding Consumer Minds: How Psychological Aspects Drive E-commerce Purchases. International Journal Administration, Business & Organization, 5(5), 15-23.

Nurain, A., Chaniago, H., & Efawati, Y. (2024). Digital Behavior and Impact on Employee Performance: Evidence from Indonesia. Journal of Technology Management & Innovation, 19(3), 15-27.

Nafees, A., Rana, Z., Khan, M., & Shah, S. (2025). Industry 5.0 and human–technology collaboration: The role of AI and machine learning in shaping future workplaces. Future Work Journal, 9(9), 89–102.

Nowell, L. S., Norris, J. M., & White, D. E. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. International Journal of Qualitative Methods, 16(1). https://doi.org/10.1177/1609406917733847

Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187–192. https://doi.org/10.1126/science.adh2586

Nuraida, I. (2022). Manajemen perkantoran. PT Kanisius.

Nuraini, A., Chaniago, H., & Efawati, Y. (2024). Digital behavior and impact on employee performance: Evidence from Indonesia. Journal of Technology Management and Innovation, 19(3), 78–89.

Rimadias, S., Arsy, F., Emir, S., & Nabila, R. (2025). Persepsi Generasi Z terhadap pemanfaatan Artificial Intelligence (AI) dalam meningkatkan kinerja karyawan di tempat kerja. Jurnal Ilmiah Ekonomi, 1(1), 29–43. https://doi.org/10.63822/d11c2792

Schein, E. H. (2004). Organizational culture and leadership (3rd ed.). Jossey-Bass.

Sharma, A. (2025). Smart work and smart life: Role of AI in managing workload and wellbeing. Viksit Bharat@2047, 50–59. https://doi.org/10.62823/inspira/2025/9788199024557/05

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics and Informatics, 47, 101317. https://doi.org/10.1016/j.tele.2019.101317

Sutton, J., & Austin, Z. (2015). Qualitative research: Data collection, analysis, and management. Canadian Journal of Hospital Pharmacy, 68(3), 226–231. https://doi.org/10.4212/cjhp.v68i3.1456

Syafani, R. S., Hasya, N. N., & Chaniago, H. (2025). Mapping Generation Z work priorities: Comprehensive study and strategic implications for office management in the age of AI. International Journal of Administration, Business & Organization, 6(2), 123–135. https://doi.org/10.61242/ijabo.25.482

Tathavadekar, V. P., & Mahankale, N. R. (2025). Next-generation human resource management: Transforming organizational strategy for Generation Z workforce integration through digital innovation and employee-centric approaches. Leadership and Organizational Insights, 1(3), 1–9. https://doi.org/10.64229/dcxcyg49

Taufiq Hail, G. A.-M., Yusof, S. A. M., Rashid, A., El-Shekeil, I., & Lutfi, A. (2024). Exploring factors influencing Gen Z’s acceptance and adoption of AI and cloud-based applications. Emerging Science Journal, 8(3), 815–836.

Thariq, F., & Efawati, Y. (2024). The Influence of Website Quality on Buying Interest Consumer. International Journal Administration, Business & Organization, 5(3), 64-74.

Yu, J., & Yu, H. (2024). Task-technology fit and AI adoption in the workplace: A meta-analysis. Computers in Human Behavior, 150, 107982. https://doi.org/10.1016/j.chb.2023.107982

Published
2025-12-25
How to Cite
Paramita, H., & Effendi, M. R. (2025). Analysis of Factors Hindering Artificial Intelligence Adoption in Office Management among Generation Z Interns. International Journal Administration, Business & Organization, 6(3), 249-260. https://doi.org/10.61242/ijabo.25.636
Section
Research Articles